
6.897 Advanced Data Structures (Spring’05)

Prof. Erik Demaine TA: Mihai Pǎtraşcu

Problem 2 – Solution

Proof of the lemma. We show that we can get from any tree to a left path (any node has just
a left child) with at most n − 1 rotations. Since a rotation can be undone by another rotation, we
can then get from the path to any tree with n − 1 more rotations, so we use ≤ 2n − 2 rotations in
total. (If you care to know, the optimum is 2n − 6).

The tree always has n − 1 edges; we show that with one rotation, we can increase the number
of edges on the left path starting from the root by one. So we need at most n − 1 rotations to get
all edges on that path. We proceed as follows: find a node x which branches off the left path, and
rotate it up to the path. Then the edge above x becomes a left-path edge. Any other edge does
not change status. See the figure:

. . .

z

x

. . . y

A B

. . .

. . .

=⇒

. . .

z

y

x

. . . A

B

. . .

. . .

Competitiveness with O(lg n) guarantee. We conceptually break the operations into chunks
of n. We keep the count of the current operation, the cost of the current chunk, and a history of
all operations ever performed. At the beginning of each chunk (the current operation is divisible
by n), we configure the tree to what the α-competitive BST would look like. Finding how that
BST would look like is free: we simulate the BST from the beginning of time, but this is just a
conceptual step, and we’re not doing any actual rotation on the real tree. Then, we configure the
real BST to what it should be using ≤ 2n rotations. A normal operation is executed by calling
the competitive BST algorithm. However, when the cost of the current chunk reaches n lg n, we
switch to an O(lg n) tree (say splay trees). Until the end of the chunk, we just use the splay
tree algorithm, which gives O(n lg n) cost. The cost for chunk i is O(n) + min{Ti, O(n lg n)},
where Ti is the cost of the competitive BST for chunk i. Summing up, we get a cost of O(n) ·
�m

n �+∑
i min{Ti, O(n lg n)} = O(m)+min{∑i Ti, O(m lg n)} = O(m)+min{αOPT, O(m lg n)} =

O(min{αOPT,m lg n}) – because OPT ≥ m.

1


