
6.871 - Lecture 2

1

Tell It What to Know
Review of Search

6.871 - Lecture 2

6.871 - Lecture 2 2

A Reminder

Checkbook balancing vs.
getting out of the supermarket

Character of task

Character of solution

Go past image to technical ideas and concepts

6.871 - Lecture 2 3

Purposes of This Lecture

Explain the mindset of knowledge engineering
Change your mind about what a program is
– From a buncha bits to …
– From code to …

Change your mind about how to create them
– Don’t tell it what to do
– Build it incrementally

Change your mind about what to use a computer for
– Many things…

6.871 - Lecture 2 4

Punchlines

The issue is style and pragmatics, not theory
A program can be much more than just code.
It can be a repository of knowledge,
an environment for the development of knowledge
Embody the reasoning, not (just) the calculation
Don’t tell it what to do, tell it what to know, and how to
use what it knows (often many different ways)
– Task changes from writing a program to specifying the

knowledge.
– Task becomes debugging knowledge, not code.

6.871 - Lecture 2 5

Punchlines

One payoff: multiple uses of the same knowledge.
Performance is only the beginning
Solving the problem is only (a small) part of the job
– Explanation
– Learning
– Tutoring

Suppressing detail helps
Build a custom language

6.871 - Lecture 2 6

Punchlines

Nothing is ever right the first time
– Nature of the task
– Nature of the knowledge
– Evolutionary development

» Build a little
» Test a little
» Redesign a little

6.871 - Lecture 2

2

6.871 - Lecture 2 8

What’s a Good Representation?

Consider: 1996 vs. MCMXCVI

Which would you rather use in arithmetic? Why?

6.871 - Lecture 2 10

What’s a Good Representation?

Consider: 1996 vs. 11111001100

Which would the computer rather use in arithmetic?
Why?

6.871 - Lecture 2 11

The Power of A Good Representation

6.871 - Lecture 2 12

The proportional ownership of the first party shall be equal to a ratio, the
numerator of which is: a ratio, the numerator of which is the holding period of
the first party multiplied by the capital contributed by the first party, and the
denominator of which is a sum, the first term of which is the holding period of
the first party and the second term of which is the holding period of the second
party; and a denominator which is the sum of two terms; the first term of which
is a ratio, the numerator of which is the holding period of the first party
multiplied by the capital contributed by the first party, and the denominator of
which is a sum, the first term of which is the holding period of the first party, the
second term of which is the holding period of the second party; and the second
term of which is a ratio, the numerator of which is the holding period of the
second party multiplied by the capital contributed by the second party, and the
denominator of which is a sum, the first term of which is the holding period of
the first party and the second term of which is the holding period of the second
party.

6.871 - Lecture 2 15

DO 14 I = 1,N
DO 14 J = 1,N

14 V(I,J) = (I/J)*(J/I)

What’s a Program?
The Minimal Number of Bits View

6.871 - Lecture 2 16

Task: Symbolic Mathematics

3 4 5 73 2x x x+ + +

9 8 52x x+ +

How can we take a derivative of

to get

6.871 - Lecture 2

3

6.871 - Lecture 2 25

Observations about the knowledge

It’s organized around the operators.

It’s organized around nested sub-expressions

Top-down tree descent is the natural approach

The representation should reflect that.

The representation should facilitate that.

6.871 - Lecture 2 26

Use a Natural Representation

Conventional mathematical notation

(* (* 2 y) sqrt(+ (^ x 3) (* x y (+ z a))))

Use the pattern appropriate for the leading operator

)(2 3 azxyxy ++

6.871 - Lecture 2 27

A Small Language

In effect we’ve built a language with the right
abstractions:
– Expression tree
– Dispatching on leading operator
– Recursive descent through the expression tree

Operators are independent, modular chunks of
“mathematical knowledge”
Operators can be added incrementally
There is an indexing mechanism for finding relevant
operators given the structure of the current
representational focus

6.871 - Lecture 2 29

Catchphrases and Punchlines

The issue is style and pragmatics, not theory

A program can be much more that just code.
It can be a repository for knowledge, an environment
for the development of knowledge

Embody the reasoning, not (just) the calculation.

Don’t tell it what to do, tell it what to know.
– Task changes from writing a program to specifying the

knowledge.
– Task becomes debugging knowledge, not code.

6.871 - Lecture 2 30

Catchphrases and Punchlines

One payoff: multiple uses of the same knowledge.

Performance is only the beginning
Solving the problem is only (a small) part of the job
– Explanation
– Learning
– Tutoring

6.871 - Lecture 2 31

Task: Balancing Your Checkbook

Read StatementBalance
AdjBalance = StatementBalance
until done do {read OutstandingCheck

AdjBalance=- OutstandingCheck}
until done do {read OutstandingDeposits

AdjBalance=+ OutstandingDeposits}
until done do {read Fee

AdjBalance=- Fee}
until done do {read Interest

AdjBalance=+ Interest}
if AdjBalance = CheckBookBalance

{print (“It balances!”); return}
else if AdjBalance > CheckbookBalance

{print “Hey, good news.”; return}
else {print “We’re scrod.”; return}

6.871 - Lecture 2

4

6.871 - Lecture 2 32

A Spreadsheet is Almost Right

The right mindset: focus on the knowledge

6.871 - Lecture 2 33

The Checkbook Example

Cleared Cleared Uncleared Uncleared
Deposits Checks Deposits Checks

Bank Balance $1234.56 $100.00 $213.40 $250.00 $12.34
$250.00 $874.30 $95.00 $19.99

Total uncleared $75.00 $19.00 $180.00 $25.00
deposits 725.00 $90.00 $22.00 $200.00 $72.54

$15.00 $105.00
$14.00

Total uncleared checks $24.00
$248.87

New Balance
$1,710.69

6.871 - Lecture 2 34

A Spreadsheet is Almost Right

The right mindset: focus on the knowledge
But:
– They are numeric and we want more
– They have only one inference engine

KBS as “conceptual spreadsheets”

6.871 - Lecture 2 35

Search Basics

Lecture 2, Part 2.

6.871 - Lecture 2 36

The Fundamental Problem:
Search in a Problem Space

B = branching factor
D = depth

Node

Operator

B

D

Size = Bd

6.871 - Lecture 2 37

Search Spaces Grow
Exponentially

The marginal cost of slight improvement is prohibitive

6.871 - Lecture 2

5

6.871 - Lecture 2 38

The Shape of The Space

How densely distributed are the answers?
How uniformly distributed are the answers?
How do answer quality and distance relate?

Node

Operator

B

D

Size = Bd

6.871 - Lecture 2 39

Depth First Search
Go down before you go across
Maintains focus
Minimizes storage requirements
Finds answer faster sometimes

6.871 - Lecture 2 40

Breadth First Search

Never gets lost on deep or infinite path
Always finds answer if it’s there
Requires lots of storage

A node
An operator

d

b

6.871 - Lecture 2 41

Best First Search

Requires quality metric
If metric is informed it’s very quick
Space requirements are intermediate

6.871 - Lecture 2 42

Pruning
Throw away unpromising nodes
Some risk that the answer is still there
Great savings in time and space
Breadth limited search, beam search

6.871 - Lecture 2 43

Optimum Often isn’t Optimum

In the real world things go wrong
Robust near-optimum is usually better on average

6.871 - Lecture 2

6

6.871 - Lecture 2 45

Planning Islands:
The Power of Recognition

d (rows)

Problem complexity = b d 6.871 - Lecture 2 46

Recognizing the Form of the Problem

E.g. b = 2, d = 10, n = 5
Without Islands: 1024
With Islands: 5 * 4 = 20

You can guess wrong 50
times and still be ahead of
the game!

d (rows)

Problem complexity = b d

N subproblems
Each of depth D/N
Each of size bD/N

Total size = N * bD/N

N planning islands

6.871 - Lecture 2 48

Summary

All problem solving problems involve search spaces
Search space grow intractably
Many common algorithms for search are known

In the Knowledge Lies the Power
– Knowledge of a heuristic metric
– Knowledge of planning islands
– Knowledge of relevant abstractions

Build representations that capture these sources of
power

