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Problem Set 3
Assigned: 03/31/2005

Due: 04/12/2005

Please submit an electronic copy of your writeup and code for each problem
to 6869-submit@csail.mit.edu.

Problem 1 Probabilistic Graphical Model
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Figure 1: A probabilistic graphical model.

Consider the probabilistic graphical model in Figure 1.

(a) Assume that the 5 variables described by this model are jointly Gaus-
sian. Write down the general form of the inverse covariance matrix (you
can assume each of the depicted variables is a scalar, not a vector).

(b) Do the following in Matlab: First, select values for the inverse covari-
ance matrix of the 5 variables. (You should include this matrix in your
write-up for comparison purposes.) Then, assume the variables all have
zero mean and draw 50 samples of the 5 jointly gaussian random vari-
ables. (this will give you a 50 by 5 dimensional matrix of observations).
You can use gausssamp.m for the sampling.

(i) Using the maximum likelihood method described in class, esti-
mate the covariance of the 5 jointly gaussian random variables
and compute the inverse covariance matrix. How does the result
compare with the values implied by the true inverse covariance
matrix?

(ii) Now exploit the known graphical model structure: find the maxi-
mum likelihood estimate of the covariance matrix for these 4 pairs
of jointly gaussian random variables: (x1, x3), (x3, x4), (x4, x2),
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(x4, x5). Assuming these estimates are correct, form another es-
timate of the inverse covariance matrix of the 5 jointly gaussian
random variables. How does it compare with your estimate in
part (i), and with the true inverse covariance matrix?

Problem 2 Iterated Proportional Fitting

Consider 3 variables, a, b, and c, each of which can have 5 possible states.
Form a 3-dimensional cube of (random) probability mass values between
zero and one for each triplet of states, normalized to integrate to one over
the whole cube of data.

As in class, you observe the marginal probabilities, Pa(a), Pb(b), Pc(c).
Make a random initial guess for the joint probabilities, P (a, b, c), and itera-
tively modify it using Iterated Proportional Fitting for 5 or 10 iterations.

Plot the fit to the observed marginals for several iterations of IPF. Also
plot the KL distance between the original and estimated joint probabilities
as a function of IPF iteration. (For a definition of KL distance, see, for ex-
ample, http://www-nlp.stanford.edu/fsnlp/mathfound/fsnlp-slides-kl.pdf).

Problem 3 Markov Network
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Figure 2: A Markov network.

Consider the Markov network in Figure 2. Each of the variables is binary
and can be in state 0 or state 1.

d is observed to be in state 1. e is observed to be in state 0. The
compatibility matrix Φ between a&d equals that between c&e and is

Φ(a, d) =

(
0.9 0.1
0.1 0.9

)

The compatibility matrix Ψ between a&b equals that between b&c and is

Ψ(a, b) =

(
α 1-α

1-α α

)
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(a) For α = 0.99, find P (a), the marginal probabilities for the variable a
being in either of its two possible states, 0 and 1.

(b) Do the same for α = 0.6. Discuss why the result is different in these
two cases.

For Problem 4 and 5, we will cover the material in lectures on April 5 and
7. If you want to start on these problems before then, the reading for this
material is Chapt. 22, sections 1-3 of Forsyth and Ponce book

Problem 4 Eigenfaces for Recognition

In this problem we explore the use of eigenfaces for person recognition.
Download the MATLAB data file faces.mat, which contains the cropped,
normalized 51× 43 images of 34 individuals. Each individual has been pho-
tographed with two facial expressions: ”neutral” and ”smiling”. The pixels
of each person’s image have been stored as columns of the neutralFaces and
smileFaces matrices. To convert back and forth between image and vector
representations, use the reshape command.

(a) To (approximately) account for illumination variations, normalize each
of the face vectors so that it has zero mean and unit variance.

(b) Assume that we have a database of neutral face images, and want to
determine the identity of the smiling individuals. For each of the 34
smiling faces, measure the norm of the difference between their nor-
malized appearance vector and each of the 34 neutral faces. Classify
each smiling face according to its nearest neighbor. What percentage
of the smiling faces are correctly recognized?

(c) Using the MATLAB svd command, determine the principle compo-
nents of the set of normalized neutral faces (do not include the smiling
faces). Be sure to subtract the mean face before performing your PCA.
Plot the mean face and the first three principle components (the ”eigen-
faces”).

Hint: To avoid excessive memory usage when calculating SVD, use
MATLAB’s ”economy size” option.
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(d) Determine the number of principle components required to model 90%
of the total variance in the neutral face set. Project each of the neutral
and smiling faces onto the corresponding eigenfaces. Use the coeffi-
cients of these projections to classify each smiling face. Compute the
percentage of correctly recognized faces, and compare to part (b).

(e) Repeat part (d) using the number of principal components required to
model 80%, 70%, 60%, and 50% of the total neutral face variance. Plot
the corresponding recognition rates.

Problem 5 Eigenfaces for Detection

(a) Construct the principle components (eigenfaces) which best model the
combined variations of the neutral and smiling faces from Problem 4.
Be sure to normalize each face vector as in 2(a). Plot the mean face
and first three eignefaces, and compare to 2(c).

(b) Load the test image mad.png. Use MATLAB’s ginput command to
(approximately) locate the center’s of this image’s two (human) faces.

(c) Repeat this part for each of the faces from part (b). For each pixel in
an 80 × 80 pixel square centered around the face, determine the best
reconstruction of the 51 × 43 patch centered at that point using the
first 10 principal components from part (a). Each image patch should
be normalized as in 2(a) prior to this reconstruction procedure. Plot
the distance between the input and reconstructed (normalized) patches
as a function of patch location. For the smallest error shift, plot the
input and reconstructed image patches.

(d) Repeat part (c), but this time search over the entire image. Make the
same pair of plots as before.

(e) Are the eigenfaces suitable for face detection in general scenes? Why
or why not? If not, are there controlled situations where they would
prove more useful?


