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Today (April 7, 2005)

e Face detection

— Boosting based
 Face recognition, gender recognition

Some slides courtesy of: Baback Moghaddam, Trevor Darrell, Paul Viola



Readings

Face detection:
— Forsyth, ch 22 sect 1-3.
- "Probabilistic Visual Learning for Object Detection," Moghaddam
B. and Pentland A., International Conference on Computer Vision,

Cambridge, MA, June 1995. ,(http://www-
white.media.mit.edu/vismod/publications/techdir/TR-326.ps.Z)

Brief overview of classifiers in context of gender recognition:

— , Gender Classification
with Support Vector Machines Citation: Moghaddam, B.; Yang, M-H.,
"Gender Classification with Support Vector Machines", IEEE
International Conference on Automatic Face and Gesture Recognition
(FG), pps 306-311, March 2000

Overview of subspace-based face recognition:

— Moghaddam, B.; Jebara, T.; Pentland, A., "Bayesian Face Recognition”,
Pattern Recognition, Vol 33, Issue 11, pps 1771-1782, November 2000
( , http://www.merl.com/reports/docs/TR2000-42.pdf)

Overview of support vector machines—Statistical Learning and Kernel
MethodsBernhard Scholkopf,
ftp://ftp.research.microsoft.com/pub/tr/tr-2000-23.pdf



http://www.merl.com/reports/docs/TR2000-01.pdf
http://www.elsevier.nl/inca/publications/store/3/2/8/

Face detectors

Subspace-based
Distribution-based
Neural network-based
Boosting-based



The basic algorithm used for face detection
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Neural Network-Based Face Detector

* Train a set of multilayer perceptrons and arbitrate
a decision among all outputs [Rowley et al. 98]
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“Elgenfaces”

Figure 4: Standard Eigenfaces.

Moghaddam, B.; Jebara, T.; Pentland, A., "Bayesian Face Recognition", Pattern Recognition, Vol 33, Issue 11, pps 1771-1782, November 2000



Computing eigenfaces by SVD

X = !.B oo = B = [ | pices
R

<>
num. face images

svd(X,0) gives X=USV!

Covariance matrix XXT =US VT VS UT

So the U’s are the eigenvectors

— U 82 UT of the covariance matrix X



Computing eigenfaces by SVD

X — ..a s e g — num. pixels
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<>
num. face images

svd(X,0) gives X=USVT

Covariance matrix XXT=U SVTV SUT
=US2UT

Some new face image, X
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Subspace Face Detector

 PCA-based Density Estimation p(x)
 Maximum-likelihood face detection based on DIFS + DFFS

* Eigenvalue spectrum
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Moghaddam & Pentland, “Probabilistic Visual Learning for Object Detection,” ICCV’95.



Subspace Face Detector

 Multiscale Face and Facial Feature Detection & Rectification

g Multiscale
Head Search

(o)) ()

Moghaddam & Pentland, “Probabilistic Visual Learning for Object Detection,” ICCV’95.



Today (April 7, 2005)

e Face detection

— Boosting based
 Face recognition, gender recognition

Some slides courtesy of: Baback Moghaddam, Trevor Darrell, Paul Viola



Rapid Object Detection Using a Boosted
Cascade of Simple Features

Paul Viola  Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL



The Classical Face Detection Process

L T

- . -

¥ ol Bl

j ]

' 1 i

i T B
j il
| - b )

¥ GA Smallest

‘ Scale
i es _ -‘L;.

0 Oggg&gogations/Scales

Viola and Jones, Robust object detection using a boosted cascade of simple fea?urés,




Classifier 1s Learned from Labeled Data

{78
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e Training Data
— 5000 faces
o All frontal

— 108 non faces

— Faces are normalized
e Scale, translation

e Many variations
— Across individuals
— IHllumination

— Pose (rotation both in plane and out)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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What Is novel about this approach?

Feature set (... IS huge about 16,000,000 features)
Efficient feature selection using AdaBoost
New Image representation: Integral Image

Cascaded Classifier for rapid detection
— Hierarchy of Attentional Filters

The combination of these ideas yields the fastest
known face detector for gray scale images.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Image Features

“Rectangle filters”
Similar to Haar wavelets
Differences between sums

of pixels in adjacent
rectangles

0(x) = { +1 if £(x) > 6,

-1 otherwise

160,000 x100 =16,000,000
Unique Features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Integral Image

« Define the Integral Image

I'(x,y)=Zl(x',y')

e Any rectangular sum can be
computed in constant time:

D=1+4-(2+3)
=A+(A+B+C+D)-(A+C+ A+B)

=D

* Rectangle features can be computed
as differences between rectangles




Huge “Library” of Filters
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Constructing Classifiers

 Perceptron yields a sufficiently powerful
classifier

C(X)= «9(2 a;h (X) + bj

o Use AdaBoost to efficiently choose best
features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Flavors of boosting

e Different boosting algorithms use different loss
functions or minimization procedures
(Freund & Shapire, 1995; Friedman, Hastie, Tibshhirani, 1998).

 \We base our approach on Gentle boosting: learns faster than others
(Friedman, Hastie, Tibshhirani, 1998;
Lienahart, Kuranov, & Pisarevsky, 2003).



Additive models for
classification, “gentle boost”

thvc

‘ m=1 ‘
classes
+1/-1 classification feature responses

(in the face detection case, we just have two classes)



(Gentle) Boosting loss function

We use the exponential multi-class cost function

classes
C
J = E {e—zcﬂ(v,c)}
=7
cost membership classifier
function Inclassc, output for

+1/-1 class c



Weak learners

At each boosting round, we add a perturbation
or “weak learner”:

H(’U?‘,j (_'.i) g ]{(’JU'?',:i (_'.i) -+ h.rnf}:, (’Ufg',:. (_'_i)



Use Newton’s method to select weak learners

Treat h. as a perturbation, and expand loss J to second order in h,
JH+h )=E(@*""N[2-22°h_+(z°)*h’]

C
aro min J( H-/ BT T B —z"H(v.e)/_c / 2
arg min J(H+h,,) ~ arg min aY: 2% — hy,)

L h oL ]
/ 1 c=1 ‘
cost classifier with | squared error

function perturbation o
reweighting



Gentle Boosting

Replacing the expectation with an empirical expecta-
tion over the training data, and defining weights w; =
e~ #iH(vie) for example 2 and class ¢, this reduces to
minimizing the weighted squared error:

Jose Y%u 28 — By (03, {':))2.
‘ =1 iz1 ‘ ‘

Weight squared weight  squared error
error over training
data




Good reference on boosting, and its different flavors

e See Friedman, J., Hastie, T. and Tibshirani, R. (Revised
version)
(

) “We show that
boosting fits an additive logistic regression model by
stagewise optimization of a criterion very similar to the log-
likelihood, and present likelihood based alternatives. We also
propose a multi-logit boosting procedure which appears to
have advantages over other methods proposed so far.”


http://www-stat.stanford.edu/%7Ehastie/Papers/boost.ps
http://www-stat.stanford.edu/%7Ehastie/Papers/boost.ps
http://www-stat.stanford.edu/%7Ehastie/Papers/boost.ps
http://www-stat.stanford.edu/~hastie/Papers/boost.ps

Initial uniform weight
AdaBOOSt on training examples

(Freund & Shapire ’95)

f (X) =0 Zat ht (X) weak classifier 1 /
t

-
—
— -
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———
—

Incorrect classifications
o, = 0.5 |()g error, re-weighted more heavily
1—error,
weak classifier 2 \
] WI e_yiatht(xi)
I _ t-1
Wt

Z Wti_le—}’i“tht (%)
i

weak classifier 3

Final classifier is weighted
combination of weak classifiers

Viola and Jones, Robust object detection using a boosted cascade of simple features, CV




AdaBoost (Freund & Shapire 95)

*Given examples (X4, ¥), ---, (Xn» Yn) Where y; = 0,1 for negative and positive examples
respectively.
sInitialize weights wy_, ; = 1/N

eFort=1, ..., T N
«Normalize the weights, w,;=w;;/2 jV—ViJ

Find a weak learner, i.e. a hypothesis, h,(x) with weighted error less than .5
«Calculate the error of h;: e;= 2 wy; | hy(x;) - ;i |

Update the weights: w;; = w,; B{9) where B, = e,/ (1- ) and d; = 0 if example x; is
classified correctly, d; = 1 otherwise.

*The final strong classifier is
T

.
0 = {1 If Z ah(x)>05% o

0 otherwise
where o, = log(1/ B))
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



AdaBoost for Efficient Feature Selection

e QOur Features = Weak Classifiers

e For each round of boosting:
— Evaluate each rectangle filter on each example
— Sort examples by filter values

— Select best threshold for each filter (min error)
 Sorted list can be quickly scanned for the optimal threshold

— Select best filter/threshold combination

— Weight on this feature is a simple function of error rate
— Reweight examples

— (There are many tricks to make this more efficient.)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084
false positives.
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Trading Speed for Accuracy

e Given a nested set of classifier

% False Pos

50

hypothesis classes ;

—

99

7

% Detection

50

e Computational Risk Minimization

T T T
IMAGE - —»( Classifier 2 FACE
SUB-WINDOW

l F l F F
NON-FACE NON-FACE NON-FACE
Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Experiment: Simple Cascaded Classifier

Rz cunves comparing cascaded clazsifier to monalithic clazsifer
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Cascaded Classifier

50% 20% 2%
IMAGE — > —> —»( 20 Features) ——» FACE
SUB-WINDOW

lF lF lF

NON-FACE NON-FACE NON-FACE

o A 1 feature classifier achieves 100% detection rate
and about 50% false positive rate.

e A5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)

— using data from previous stage.

e A 20 feature classifier achieve 100% detection
rate with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



A Real-time Face Detection System

faces

Training non-faces: 350 million sub-
windows from 9500 non-face images

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10,
25, 25, 50, 50, 50, 75, 100, ..., 200, ...

Final classifier contains 6061 features.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Accuracy of Face Detector

Performance on MIT+CMU test set containing 130 images with
507 faces and about 75 million sub-windows.

ROC curve far face detector with step size =1.0
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Comparison to Other Systems

False Detections

Detector

10

31

50

65

/8

95

110

167

Viola-Jones

76.1

88.4

91.4

92.0

92.1

92.9

93.1

93.9

Viola-Jones
(voting)

81.1

89.7

92.1

93.1

93.1

93.2

93.7

93.7

Rowley-Baluja-
Kanade

83.2

86.0

89.2

90.1

Schneiderman-
Kanade

94.4

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Speed of Face Detector

Speed is proportional to the average number of features
computed per sub-window.

On the MIT+CMU test set, an average of 9 features out
of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium lll, a 384x288 pixel image takes
about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade
and 600 times faster than Schneiderman-Kanade.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Output of Face Detector on Test Images
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More Examples




Single frame from video demo
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From Paul Viola’s web page

We have created a new visual object detection framework that is capable of
processing images extremely rapidly while achieving high detection rates. There
are three key contributions.

The first is the introduction of a new image representation called the Integral
Image" which allows the features used by our detector to be computed very
quickly.

The second is a learning algorithm, based on AdaBoost, which selects a small
number of critical visual features and yields extremely efficient classifiers.

The third contribution is a method for combining classifiers in a " cascade" which
allows background regions of the image to be quickly discarded while spending
more computation on promising object-like regions.

A set of experiments in the domain of face detection are presented. The system
yields face detection performace comparable to the best previous

systems. Implemented on a conventional desktop, face detection proceeds at 15
frames per second.



Conclusions

* We [they] have developed the fastest known
face detector for gray scale images

» Three contributions with broad applicability
— Cascaded classifier yields rapid classification

— AdaBoost as an extremely efficient feature
selector

— Rectangle Features + Integral Image can be
used for rapid image analysis

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Today (April 7, 2005)

 Face recognition, gender recognition

Some slides courtesy of: Baback Moghaddam, Trevor Darrell, Paul Viola



Bayesian Face Recognition
Moghaddam et al (1996)

Intrapersonal  Q,
Extrapersonal Q.

Q) ={A =X —X; : L(x;) = L(X;)}
Qe ={A =X —X; 1 L(X) = L(xj)}

_ P(A]€)P(€2))
P(A|Q)P(Q))+P(A]|Qg)P(Q2) ‘ llzgzlllé)) :ﬂ
i
P(A|Q) — [Moghaddam ICCV’95] S(p.g)

Moghaddam, B.; Jebara, T.; Pentland, A., "Bayesian Face Recognition”, Pattern Recognition, Vol 33, Issue 11, pps 1771-1782, November 2000



Figure 6: “Dual” Eigenfaces: (a) Intrapersonal, (b) Extrapersonal

Moghaddam, B.; Jebara, T.; Pentland, A., "Bayesian Face Recognition", Pattern Recognition, Vol 33, Issue 11, pps 1771-1782, November 2000
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Figure 7: Cumulative recognitionrates for frontal FA/FB views for the competing algorithmsin the FERET 1996 test. The top
curve (labeled “MIT Sep 967 ) corresponds to our Bayesian matching technique, Note that second placed is standard eigenface

matching (labeled “MIT Mar 9537 ).
Moghaddam, B.; Jebara, T.; Pentland, A., "Bayesian Face Recognition”, Pattern Recognition, Vol 33, Issue 11, pps 1771-1782, November 2000



Eig%nfaces metrglod ‘Bayesian method

[13*((;3I | A) MAP}

P(A| Q) ML
Y

S(p,g)
(b)

Moghaddam, B.; Jebara, T.; Pentland, A., "Bayesian Face Recognition", Pattern Recognition, Vol 33, Issue 11, pps 1771-1782, November 2000
Figure 9: Operational signal flow diagrams for (a) Eigenface similarity and (b) Probabilistic similarity.




Face Recognition Resources

Face Recognition Home Page:
* http://www.cs.rug.nl/~peterkr/FACE/face.html

PAMI Special Issue on Face & Gesture (July ‘97)
FERET

* http://www.dodcounterdrug.com/facialrecognition/Feret/feret.htm

Face-Recognition Vendor Test (FRVT 2000)

* http://www.dodcounterdrug.com/facialrecognition/FRVT2000/frvt2000.htm

Biometrics Consortium

* http://www.blometrics.org

Moghaddam, B.; Jebara, T.; Pentland, A., "Bayesian Face Recognition”, Pattern Recognition, Vol 33, Issue 11, pps 1771-1782, November 2000



Gender Classification with
Support Vector Machines

Baback Moghaddam

2 MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Support vector machines (SVM’s)

he 3 good ideas of SVM’s



Good idea #1: Classify rather than
model probability distributions.

o Advantages:

— Focuses the computational resources on the task at
hand.

e Disadvantages:
— Don’t know how probable the classification is

— Lose the probabilistic model for each object class;
can’t draw samples from each object class.



Good i1dea #2: Wide margin
classification

 For better generalization, you want to use
the weakest function you can.

— Remember polynomial fitting.
e There are fewer ways a wide-margin

hyperplane classifier can split the data than
an ordinary hyperplane classifier.



Too weak

1.0 :

0.5

0.0 -
0.0 0.5 1 1.0

Figure 1.6. An example of a set of 11 data points obtained by sampling the
function h(z), defined by (1.4), at equal intervals of x and adding random noise.
The dashed curve shows the function h(x), while the solid curve shows the
rather poor approximation obtained with a linear polynomial, corresponding
to M =1in (1.2).

Bishop, neural networks for pattern recognition, 1995



Just right

1.0 1

0.5

0.0 :
0.0 s 2 Wgy

Figure 1.7. This shows the same data set as in Figure 1.6, but this time fitted by

a cubic (M = 3) polynomial, showing the significantly improved approximation
to h(z) achieved by this more flexible function.

Bishop, neural networks for pattern recognition, 1995



T00 strong

0.0
0.0

Figure 1.8. The result of fitting the same data set as in Figure 1.6 using a 10th-
order (M = 10) polynomial. This gives a perfect fit to the training data, but
at the expense of a function which has large oscillations, and which therefore
gives a poorer representation of the generator function h{z) than did the cubic
polynomial of Figure 1.7.

Bishop, neural networks for pattern recognition, 1995



W

e

\ \
\ v
i A

Figure 1.5 A binary classification toy problem: separate balls from diamonds. The optimal
hyperplane (1.23) is shown as a solid line. The problem being separable, there exists a weight
vector w and a threshold b such that y;({w,x;) +b) > 0 (i = 1,...,m). Rescaling w and
b such that the point(s) closest to the hyperplane satisfy |(w,x;) + b| = 1, we obtain a
canonical form (w,b) of the hyperplane, satisfying vi({w,x;) 4 b) > 1. Note that in this
case, the margin (the distance of the closest point to the hyperplane) equals 1/||w]||. This
can be seen by considering two points x;,x; on opposite sides of the margin, that is,
{w,x1) +b =1,{w,x;) + b = —1, and projecting them onto the hyperplane normal vector
W/ ||W|.

Learning with Kera{yls,gcholkopf and_SmoIa, 2002 ] ]

Finding the wide-margin separating hyperplane: a quadratic

programming problem, involving inner products of data vectors



Good 1dea #3: The kernel trick



Non-separable by a hyperplane in 2-d
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Separable by a hyperplane in 3-d




Embedding

* input space A feature space
0 *
L
LLTRTYENTYITY =
O O -
O
Q
- -

Figure 1.6 The idea of SVMs: map the training data into a higher-dimensional feature
space via @, and construct a separating hyperplane with maximum margin there. This
yields a nonlinear decision boundary in input space. By the use of a kernel function (1.2), it

is possible to compute the separating hyperplane without explicitly carrying out the map
into the feature space.

Learning with Kernels, Scholkopf and Smola, 2002



The 1dea

* There are many embeddings were the dot product
In the high dimensional space is just the kernel
function applied to the dot product in the low-
dimensional space.

* For example:
— K(X,X") = (<x,x’> + 1)d
* Then you “forget” about the high dimensional

embedding, and just play with different kernel
functions.



Example kernel functions

Polynomials
Gaussians

Sigmoids

Radial basis functions
Etc...



Figure 1.7 Example of an SV classifier found using a radial basis function kernel k(x, x') =
exp(—||x — x'||?) (here, the input space is X = [—1,1]?). Circles and disks are two classes of
training examples; the middle line is the decision surface; the outer lines precisely meet the
constraint (1.25). Note that the SVs found by the algorithm (marked by extra circles) are not
centers of clusters, but examples which are critical for the given classification task. Gray
values code |3, y;ck(x, x;) + b|, the modulus of the argument of the decision function
(1.35). The top and the bottom lines indicate places where it takes the value 1 (from [471]).

Learning with Kernels, Scholkopf and Smola, 2002



Gender Classification with
Support Vector Machines

Baback Moghaddam

2 MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender Prototypes

yn-aepue-)spaudem

Copyright 1995

s~ |mMages courtesy of University of St. Andrews Perception Laboratory

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender Prototypes

yn-aepue-)spaudem

s Images courtesy of University of St. Andrews Perception Laboratory

University of St. Andrews

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Classifier Evaluation

e Compare “standard” classifiers

e 1755 FERET faces

— 80-by-40 full-resolution
— 21-by-12 “thumbnails”

« 5-fold Cross-Validation testing

e Compare with human subjects

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Face Processor

— w] Multiscale g Feature
Head Search Search

(o) o) ) -

[Moghaddam & Pentland, PAMI-19:7]

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender (Binary) Classifier

Gender [ . F ] M
Classifier
E

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Binary Classifiers

NN Linear Fisher

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Linear SVM Classifier

e Data: {xi,Vi} i=123..N Vyi={1+1}
e Discriminant: f(x)=(w.x+b) >0

* minimize | w ||

 subject to Vi(W.Xi+b)>1 foralli

o Solution: QP gives {ai}
* Wopt = 2 i Yi Xi

e f(X)= 2 aiyi(Xi.X)+D

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



“Support Faces

FEMALE

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Classifier Performance

Classifier | Error Rate

Overall Male Female
SVM with RBF kernel 3.38% 2.05% 4.79%
SVM with cubic polynomial kernel 4.38"% 4.21% 5.59%
Large Ensemble of RBF 5.54% 4.59% 6.55%
Classical RBF 1.79% 6.89% 8.75%
Quadratic classifier 10.63% 9.44% 11.88%
Fisher linear discriminant 13.03% | 12.31% | 13.78%
Nearest neighbor 27.16% | 26.53% | 28.04%
Linear classifier 538.95% | 358.47% | 59.45%

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002
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Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Gender Perception Study

e Mixture: 22 males, 8 females
e Age: mid-20s to mid-40s

o Stimuli: 254 faces (randomized)

— low-resolution 21-by-12
— high-resolution 84-by-48

o Task: classify gender (M orF)

— forced-choice
— no time constraints

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



How would you classify these 5 faces?

LU

Top five human misclassifications

True classification: F, M, M, F, M



Human Performance

But note how the pixellated enlargement
hinders recognition. Shown below with

84 x 48 21 x 12 pixellation removed

Stimuli —

N = 4032 N =252

Results —. High-Res Low-Res o = 37%

6.54% 30.7%

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



Machine vs. Humans

35
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30 O High-Res
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% Error 9o
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SVM Humans

Moghaddam, B.; Yang, M-H, "Learning Gender with Support Faces", IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), May 2002



end



Beautiful AdaBoost Properties

» Training Error approaches 0 exponentially

e Bounds on Testing Error Exist
— Analysis is based on the Margin of the Training Set

* Weights are related the margin of the example
— Examples with negative margin have large weight
— Examples with positive margin have small weights

f(x):Zaihi(x) mane y'”x)>z ~y.C(x))
C(x)=0(f (x))

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Ada-Boost Tutorial

e Given a Weak learning algorithm

— Learner takes a training set and returns the best
classifier from a weak concept space
 required to have error < 50%

 Starting with a Training Set (initial weights 1/n)
— Weak learning algorithm returns a classifier

— Rewelght the examples
% g DW= > w,

» Weight on correct examples is decreased
» Weight on errors is decreased \Errors JeCorrect

 Final classifier is a weighted majority of Weak
Classifiers
— Weak classifiers with low error get larger weight

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




	Face detection and recognition
	Today (April 7, 2005)
	Readings
	Face detectors
	Neural Network-Based Face Detector
	“Eigenfaces”
	Computing eigenfaces by SVD
	Computing eigenfaces by SVD
	Subspace Face Detector
	Subspace Face Detector
	Today (April 7, 2005)
	The Classical Face Detection Process
	Classifier is Learned from Labeled Data
	What is novel about this approach?
	Image Features
	Integral Image
	Huge “Library” of Filters
	Constructing Classifiers
	Flavors of boosting
	Additive models for classification, “gentle boost”
	(Gentle) Boosting loss function
	Weak learners
	Use Newton’s method to select weak learners
	Gentle Boosting
	Good reference on boosting, and its different flavors
	AdaBoost
	AdaBoost for Efficient Feature Selection
	Example Classifier for Face Detection
	Trading Speed for Accuracy
	Cascaded Classifier
	A Real-time Face Detection System
	Accuracy of Face Detector
	Comparison to Other Systems
	Speed of Face Detector
	Output of Face Detector on Test Images
	More Examples
	Single frame from video demo
	From Paul Viola’s web page
	Conclusions
	Today (April 7, 2005)
	Bayesian Face Recognition Moghaddam et al (1996)
	
	
	
	Face Recognition Resources
	Gender Classification with Support Vector Machines
	Support vector machines (SVM’s)
	Good idea #1: Classify rather than model probability distributions.
	Good idea #2: Wide margin classification
	Too weak
	Just right
	Too strong
	
	Good idea #3: The kernel trick
	Non-separable by a hyperplane in 2-d
	Separable by a hyperplane in 3-d
	Embedding
	The idea
	Example kernel functions
	
	Gender Classification with Support Vector Machines
	Gender Prototypes
	Gender Prototypes
	Classifier Evaluation
	Face Processor
	Gender (Binary) Classifier
	Binary Classifiers
	Linear SVM Classifier
	Classifier Performance
	Gender Perception Study
	How would you classify these 5 faces?
	Human Performance
	end

