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Exam 2
Assigned: 05/03/2005

Due: 05/05/2005 (Midnight)

Requirements: The exam is open-book and open-web. (Sources should be
cited if you referred to websites or other books.) Take-home exams may not be
discussed. No collaboration is allowed. You should include the following sen-
tence in your exam write-up, which you need to sign physically or electroni-
cally: "I affirm that I did not discuss this exam or receive help

from anyone else on it, and that I have disclosed the resources

that I used in working on each problem. Signature:

Date: "

Submission: Submission deadline is 05/05/2005 Midnight. No extension
will be granted. Submission can be an electronic version to 6869-submit@csail.mit.edu,
or a hard-copy sent to 32D542.

Problem 1 Hough Transform

Hough Transform can be generalized to detect any curve that can be pa-
rameterized. Consider detecting circles in images. To do this, a Canny edge
detector can be applied to an image to obtain a set of edge points. Now:

(a) Write down a parametric form of circles. Give a brief description of
how to use Hough Transform to detect circles. How many dimensions
are needed in the parameter space for this problem?

(b) Now assume that the gradient direction at each edge point is also ob-
served. How does the voting process change? Does the dimensionality
of the parameter space change? Why or why not?

(c) Under what conditions can you interpret the table entries of the Hough
Transform as log-likelihood values?

Problem 2 Kalman Filter as Dynamic Bayesian Network

In lecture 13, we derived Belief Propagation by marginalizing over hidden
variables in the Bayes Network. The graphical model of one step of Kalman
filter is shown in the following figure:
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(a) Write P (xi−1, xi, yi−1, yi) for this network in terms of conditional proba-
bilities between pairs of variables, and the prior probability P (xi−1|yi−2, yi−3, ...)
(The prior probability for xi−1 given all observations before time i−1.).

(b) By marginalizing over xi−1, derive the Belief Propagation update equa-
tions for this network and show that it will be equivalent to the Kalman
filter described in Algorithm 17.1 in section 17.3.1 of Forsythe and
Ponce.

Write the formulas for the messages passed between each of the vari-
ables, and for the marginal probability at xi in terms of the messages.

Problem 3 Multi-class Clustering

One way to do multi-class clustering is given in Algorithm 14.6 in Forsythe
and Ponce, using graph eigenvectors. Another strategy could be to run the
algorithm to separate all samples into two clusters, construct affinity matrix
for each new cluster and run the algorithm recursively to divide new clusters
until the required number of clusters is reached.
Explain why these two algorithms are not equivalent.

Problem 4 Object Recognition using Eigenspaces

For the eigenface algorithm described in page 510 of Forsythe and Ponce,
answer the following true/false questions. For each question, give a brief
explanation of your answer.

(a) True or False: The eigenface algorithm is invariant under translation of
target objects in test images. That is, it can recognize objects in test
images that are translated relative to their position in training images.

(b) True or False: The eigenface algorithm is invariant to illumination
intensity change, for example, adding a constant value to each pixel.

(c) True or False: The eigenface algorithm is invariant to illumination
direction change.
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Problem 5 Bayesian Classifier

Solve exercise 22.2 in Forsythe and Ponce. (Note there is an insignificant
typo in the algorithm 22.2. The 1

2
in the expression for δ should be inside

the square root.)

Problem 6 Graphical Model

Let x = (x1, x2, x3, x4) be a 4-dimensional Gaussian random variable with
zero mean and covariance matrix Σ given by:

Σ =




E(x1x1) E(x1x2) E(x1x3) E(x1x4)
E(x2x1) E(x2x2) E(x2x3) E(x2x4)
E(x3x1) E(x3x2) E(x3x3) E(x3x4)
E(x4x1) E(x4x2) E(x4x3) E(x4x4)


 =

1

45




21 −9 6 −9
−9 21 −9 6
6 −9 21 −9
−9 6 −9 21




Which one(ones) of the following assertions is(are) true? Why?

(a) x1 is independent of x3

(b) x1 is independent of x3 given x2

(c) x1 is independent of x3 given x2 and x4

Problem 7 Graphical Model

(a) Consider the following model with input variable x, output (or target)
variable t and hidden (or unobserved) variable y, and three parame-
ters θ1 θ2 θ3. p(t, y, x) = pθ1(t|y)pθ2(y|x)pθ3(x). θ1 is the parameter
controlling pθ1(t|y), and so on. Use Bayes rule to compute the distribu-
tion, p(y|x, t), where the final expression must be in terms of the model
distributions pθ1(t|y) pθ2(y|x) pθ3(x) only.

(b) Draw the graphical model and check whether x and t are independent,
given y. Check this by explicit calculation, i.e. show that p(t|y, x) =
p(t|y).

(c) Now add priors for the parameters: p(θ1) p(θ2) p(θ3). The Bayesian ex-
pression for the probability distribution becomes, p(t, y, x, θ1, θ2, θ3) =
p(t|y, θ1)p(y|x, θ2)p(x|θ3)p(θ1)p(θ2)p(θ3). Draw the corresponding graph-
ical model. Suppose we observed x and t, so we shade these nodes. Now
check if the following statements are true,

(i) θ1 is independent of θ2 given t and x.

(ii) θ1 is independent of θ3 given t and x.


