
6.851: Advanced Data Structures, Fall 2017

Prof. Erik Demaine, Adam Hesterberg, Jayson Lynch

Problem Set 1

Due: Wednesday, September 13, 2017 at noon

Problem 1.1 [Here Trees]. Describe and analyze a data structure for storing an ordered set
of keys, initially empty. Your data structure should support the following operations and time
bounds, where n is the number of keys in the set currently represented by the data structure:

(a) predecessor(k) in O(log n) time: find the largest key ≤ k that is in the set, and return a
pointer to the node in the data structure representing that key.

(b) successor(k) in O(log n) time: symmetrically

(c) predecessor-of-here(k, x) in O(1) time: given a pointer to the node x representing a key k,
find the largest key < k that is in the set, and return a pointer to the node representing that
key. (If there is no such key, return null.)

(d) successor-of-here(k, x) in O(1) time: symmetrically

(e) insert-after(k, x) in O(1) amortized time: given a pointer to the node x representing the
largest key < k, insert k into the data structure (if it doesn’t already exist), and return a
pointer to the node representing k.

(f) delete-here(k, x) in O(1) amortized time: given a pointer to the node x representing a key k,
delete k from the data structure.

(g) split-here(k, x) in O(1) amortized time: given a pointer to the node x representing a key k,
destructively split the data structure into two, one containing all keys ≤ k and the other
containing all keys > k. (Future operations should depend on the newly split sizes.)

(Each cost can be amortized over all operations, not just split-here operations. You should
already be comfortable with amortization from a prerequisite class. If not, we recommend that you
talk with the course staff for advice.)

Hint : Start from (a, b)-trees.
Hint : In defining a potential function to amortize split-here, think about what changes about

the split edges.

1


