Lecture 16: April 8, 2004

Today:
e Graph Representations & Algorithms
e Greedy Algorithms

— Minimum Spanning Tree
x Kruskal’s Algorithm
x Prim’s Algorithm
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Graph Representation

Graph G = (V, E)

V = set of vertices

E = set of edges = subset of V X V
It G is connected, then

|E| > |V]—1=log|E| =06(logV)

A

(Note: drop | | inside asymptotic notation)
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Graph Representation

Graph can be directed or undirected

Yg;@

Assume vertices V' = {1, 2

Define “Adjacency matrlx” A[ y n, 1..n]
S [1if(i,j) € E

Ali. ] = {0 if (i,§) ¢ E.

Adjacency matrix:
O(V?) storage — dense representation
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Sparse Graph Representation

S

Adjacency list: ©(V + FE) storage
— sparse representation

For each vertex v, keep a list Adj|v] of
vertices adjacent to v

Ad

Ad

[1]
Adj[2:

3]
Adj [4]

{2,3}
{3}
{}
{3}

Adj[v] = degree(v) [for undirected graphs]
Adj|v] = out-degree(v) [for digraphs]
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Handshaking Lemma

For undirected graphs,
> deg(v) = 2| F|

o

Thus adjacency list uses ©(V + E) storage
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Minimum Spanning Tree

Undirected, connected graph G = (V, F)
Weight function W : E — R
(Here, assume edge weights distinct)

Spanning Tree: Tree that connects all vertices
What is ST of above graph?

Minimum Spanning Tree:

Tree that connects all vertices, and minimizes

w(T) = (U,UZ):ETU}(U, V)

What is MST of above graph?
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Generic-MST

GENERIC-MST(V, F):
1A <+ ()
2for i + 1to |V|—1:
3 Find a “safe” edge e = (u,v) € F
4 A<+ AU{e}

“Safe” means “maintains A is a subset of the MST” .
Proof:

1. Loop Invariant: A is a subset of the MST T'.
2. Initialization: A =0 C T. (Trivially)
3. Maintenance: Only add “safe” edges. AU{e} C T.

4. Termination: After |V| — 1 loops, added all MST
edges.

(Using “safe” edges seems like circular logic. We'll
define it later.)
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Greedy Algorithms

1. Optimal Substructure - Optimal solution to problem
is also optimal for subproblems.

2. Locally Optimal (Greedy) Choices - Pick the choice
that “looks” best on current problem.

3. Need to prove that there is an optimal solution that
makes the greedy choice in the original problem.

4. Show that we can combine greedy choice with opti-
mal subproblem solution to get the global optimal.

In Dynamic Programming, local choice could depend
on subproblem (i.e. future) choices - optimal comes
from “bottom up”.

In Greedy Algorithms, local choice depends only on
past choices - solution comes from the “top down”.
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Optimal Substructure

T (Note: some other edges omitted):

Removing (u, v) partitions T into 17 and T5.
Claim: T7 is MST of G1 = (Vq, Eq), the
subgraph of G induced by vertices in 7T7.
V1 = vertices in 17
By ={(z,y) € E:z,y €V}
T2 is MST of G2.
w(T') = w(u,v) +w(T1) +w(T2)
Can'’t be a tree better than 77 or 15,
or 1" would be suboptimal!
(Overlapping subproblems? Dynamic prog? Yes, but...)
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Greedy Choice

Greedy choice property:
Locally optimal (greedy) choice
yields a globally optimal solution!
Theorem: Let T be MST of GG, and let A C V.
Let (u,v) be min weight edge in G connecting A to
vV —A
Then, (u,v) € T. Proof: “cut and paste”

‘inV\A
OinA

Suppose (u,v) € T

Look at path from u tov in T

Swap (u, v) with first edge on path from u
to v in T' that crosses from A to V — A.

This improves T'
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Kruskal’s algorithm for MST

Disjoint-set data structure
Sets S = {S;}, S; intersects S; = empty set
Operations:

o Insert(x): S < SU{{x}}
° UniOH(SZ', S]) S+ S5 — {Si, S]} U {Sz U S]}
e FindSet(x): returns unique S; € S where z € S

(Sounds familiar if you went to Friday’s recitation.)
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Kruskal’s algorithm for MST

Main Idea: Each node is starts as an island. Keep
adding lightest edge that doesn’t create a cycle. That
1s, add cheapest edge that connects two trees in the
“forest” .
KRUSKAL-MST(V, E):
1" < empty set
for each v € V:
INSERT(v)
Sort F/ by edge weight
for each edge e = (u,v) € E:
if (FINDSET(u) # FINDSET(v)):
T < T U{e}
8 UNION(FINDSET(u), FINDSET(v))

J O O I W N =

Why is this algorithm correct?
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Example (cont.)
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Kruskal’s Running Time

e Sort: O(F X logFE) = O(F x logV)), since |E| <
s

e O(V) calls to Insert

e O(F) calls to FindSet

e O(V) calls to Union

e We can use the Union-Find data structure in CLR
Chapter 22

e That will take ©(F x a(F,V)) time to perform E
Union and FindSet operations on a set of size V.

a(m,n) is “functional inverse” of Ackermann’s func-
tion. a(m,n) < 4 even for m,n = 10%0 grows very
slowly, but not constant!

Overall running time O(F log E).

Best MST to date: 1993 Karger, Klein, Tarjan
O(F) time randomized (uses fast MST test)
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Prim’s Algorithm

Main Idea: Start with a node. Grow a “frontier” by
adding nearest node to frontier.
Keep V' — A in priority queue (), sorted
by weight of lightest edge connecting to A
PRIM-MST(V, E):
Q<+ V
key|v] < oo, Vv € V
key|s] «+ 0, for arbitrary s € V
while () # 0:
u < Fxtract — Min(Q):
for each v € Adj|ul:
if v € Q and w(u,v) < keylv|:
keylv] < w(u,v)
T|v] + u

© 00 J O T i W N

At end, {(v, w|v]|} forms MST.
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Prim’s Running Time

Using a Min-Heap to store vertices, Prim’s makes:

e 1 call to Build-Heap.
e |V| calls to Extract-Min.
e O(F) calls to Decrease-Key.

Extract-Min and Decrease-Key runtimes depend on
the implementation:

Q T(Extract-Min) | T(Decrease-Key) | Total

Array eV) ©(1) O(V?)

Binary Heap | ©(logV) O(logV) O(ElogV)

Fib. Heap | ©(logV) ©(1) O(VlogV + E)
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