Bret| Mathematics for Computer Science

Bhm - 6.0427/18.062F

The Logic of
Propositions
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Instead of truth tables,
can try to prove valid
formulas symbolically using

axioms and deduction rules

Proving Validity

A Proof System

Ano’rher' approach is to
start with some valid
formulas (axioms) and
deduce more valid
formulas using proof rules
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s A Proof System
Lukasiewicz' proof system is a
particularly elegant example of
this idea.
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s« A Proof System
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Lukasiewicz' proof system is a
particularly elegant example of
this idea. It covers formulas
whose only logical operators are
IMPLIES (—) and NOT.
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7 Lukasiewicz' Proof System
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Three Axioms:
(P—P)—P
P—(P—Q)
P-Q)—(Q—R)—(P—R))
One Rule: modus ponens

@ [O1STO) I, Meyer February 12, 2016 propositional logic.7

[e]5] 7
| [l
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AXioms:
1) *P—->P)—>P
2) P—>("P-> Q)
3) P->Q—->(Q—R)— (P—R))

The only rule: modus ponens
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Prove formulas by starting with
axioms and repeatedly applying
the inference rule.

To illustrate the proof system
we'll do an example, which you
may safely skip.
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EEE Lukasiewicz' Proof System EEE A Lukasiewicz' Proof
Prove formulas by starting with 3rd axiom:

axioms and repeatedly applying

the inference rule. P—- Q )—

For example, o prove:

(( Q -R)—(P—R))
replace R by P
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n A Lukasiewicz' Proof

3rd axiom:

| A Lukasiewicz' Proof

3rd axiom:

Axiqu) |
P Q ) (¢ (P—P)—
( Q » P) — (P — P)) ((P—P)—P)—(P—P))

replace Q by (P — P)
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so apply modus ponens:

| Axpn\Z) |
(P_—>(|_>%P))—>
(P —P) —P) — (P —P))

A Lukasiewicz' Proof
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so apply modus ponens:

(P—P)
QED
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so apply modus ponens:

A Lukasiewicz' Proof

Ax@ml)

(P —P) —P) — (P — P))
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3 Lukasiewicz is Soun
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The 3 Axioms are all valid
(verify by truth table).

We know modus ponens is

sound. So every provable
formula is also valid.
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Eéz Lukasiewicz is Complete

Conversely, every valid

system is "complete”
Not hard to verify but would take
a full lecture; we omit it.

(NOT,—)-formula is provable:

7 Validity/SAT still difficult!

Deduction systems

in general no better than
truth tables.

No efficient method for
verifying validity is known.
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