

February 12, 2016

propositional logic,1









### A Proof System

Lukasiewicz' proof system is a particularly elegant example of this idea. It covers formulas whose only logical operators are IMPLIES  $(\rightarrow)$  and NOT.

February 12, 2016



## 6 9 13 7 12 10 5 3 1 4 14 15 8 11 2 Lukasiewicz' Proof System

#### Axioms:

- 1)  $(\neg P \rightarrow P) \rightarrow P$
- 2)  $P \rightarrow (\neg P \rightarrow Q)$
- 3)  $(P \rightarrow Q) \rightarrow ((Q \rightarrow R) \rightarrow (P \rightarrow R))$

The only rule: modus ponens



February 12, 2016

propositional logic.6



# Lukasiewicz' Proof System

Three Axioms:

$$(\overline{P} \to P) \to P$$
 $P \to (\overline{P} \to Q)$ 
 $(P \to Q) \to ((Q \to R) \to (P \to R))$ 

One Rule: modus ponens



February 12, 2016



### 12 10 5 3 1 4 14 15 8 11 2 Lukasiewicz' Proof System

Prove formulas by starting with axioms and repeatedly applying the inference rule.

To illustrate the proof system we'll do an example, which you may safely skip.



propositional logic.8



















February 12, 2016

propositional logic.17

