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The Logic of 
Propositions 
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Instead of truth tables, 
can try to prove valid 
formulas symbolically using 
axioms and deduction rules 

Proving Validity 
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A Proof System 
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Another approach is to 
start with some valid 
formulas (axioms) and 
deduce more valid 
formulas using proof rules 
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A Proof System 
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Lukasiewicz’ proof system is a 
particularly elegant example of 
this idea. 
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A Proof System 
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Lukasiewicz’ proof system is a 
particularly elegant example of 
this idea.  It covers formulas 
whose only logical operators are 
IMPLIES (→) and NOT. 
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Lukasiewicz’ Proof System 

     Axioms: 
1)   (¬P → P) → P 
2)   P → (¬P → Q)   
3)   (P → Q) → ((Q → R) → (P → R)) 

     The only rule: modus ponens 
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Lukasiewicz’ Proof System 

Three Axioms: 
  
   

   

One Rule: 
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  (P → P)→ P

  P→ (P→Q)

modus ponens 
  (P→Q)→ ((Q→ R)→ (P→ R))
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Lukasiewicz’ Proof System 

Prove formulas by starting with 
axioms and repeatedly applying 
the inference rule. 
To illustrate the proof system  
we’ll do an example, which you  
may safely skip. 
 propositional logic.8 
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Lukasiewicz’ Proof System 

Prove formulas by starting with 
axioms and repeatedly applying 
the inference rule. 
For example, to prove: 

                   P→P 

propositional logic.9 February 12, 2016 Albert R Meyer 

A Lukasiewicz’ Proof 

3rd axiom: 
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(P→   Q    )→
((   Q   → R)→ (P→ R))

replace R by P 
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A Lukasiewicz’ Proof 
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(P→   Q     )→
((   Q    → P)→ (P→ P))

3rd axiom: 

replace Q by    (P→ P)
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A Lukasiewicz’ Proof 
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(P→ (P→ P) )→
(((P→ P) → P)→ (P→ P))

Axiom 2) 
3rd axiom: 



4 

February 12, 2016 Albert R Meyer 

A Lukasiewicz’ Proof 
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(P→ (P→ P) )→
(((P→ P) → P)→ (P→ P))

Axiom 2) 
so apply modus ponens: 
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A Lukasiewicz’ Proof 
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(((P→ P) → P)→ (P→ P))
Axiom 1) 

so apply modus ponens: 
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A Lukasiewicz’ Proof 
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  (P→ P)

so apply modus ponens: 

QED 
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The 3 Axioms are all valid 
(verify by truth table). 
We know modus ponens is 
sound.             So every provable  

formula is also valid. 

Lukasiewicz’ Proof System Lukasiewicz is Sound 
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Conversely, every valid 
(NOT,→)-formula is provable: 

system is “complete” 
Not hard to verify but would take 
a full lecture; we omit it. 

Lukasiewicz is Complete 
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Validity/SAT still difficult! 

Deduction systems 
in general no better than 
truth tables.  
No efficient method for 
verifying validity is known. 
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