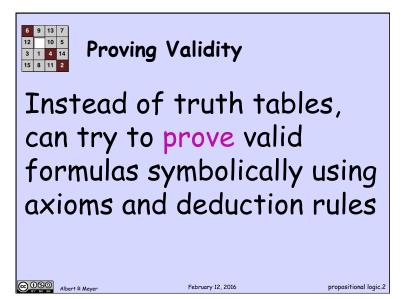
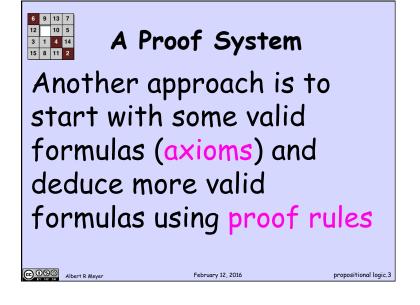
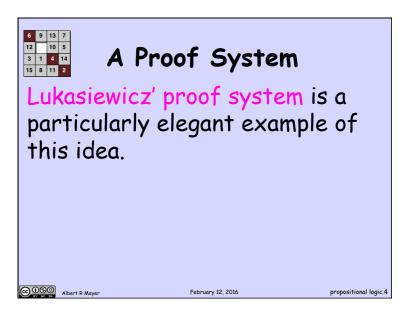


February 12, 2016

propositional logic,1







A Proof System

Lukasiewicz' proof system is a particularly elegant example of this idea. It covers formulas whose only logical operators are IMPLIES (\rightarrow) and NOT.

February 12, 2016

6 9 13 7 12 10 5 3 1 4 14 15 8 11 2 Lukasiewicz' Proof System

Axioms:

- 1) $(\neg P \rightarrow P) \rightarrow P$
- 2) $P \rightarrow (\neg P \rightarrow Q)$
- 3) $(P \rightarrow Q) \rightarrow ((Q \rightarrow R) \rightarrow (P \rightarrow R))$

The only rule: modus ponens

February 12, 2016

propositional logic.6

Lukasiewicz' Proof System

Three Axioms:

$$(\overline{P} \to P) \to P$$
 $P \to (\overline{P} \to Q)$
 $(P \to Q) \to ((Q \to R) \to (P \to R))$

One Rule: modus ponens

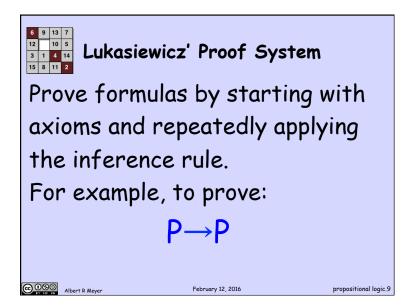
February 12, 2016

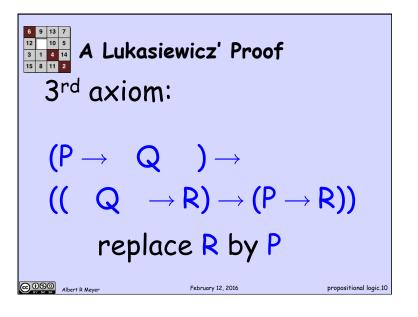
12 10 5 3 1 4 14 15 8 11 2 Lukasiewicz' Proof System

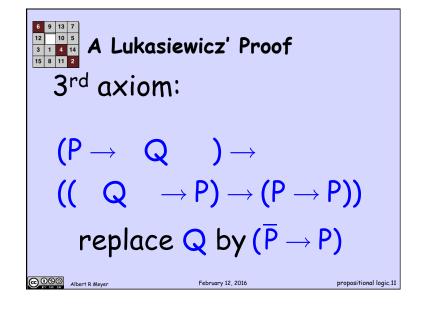
Prove formulas by starting with axioms and repeatedly applying the inference rule.

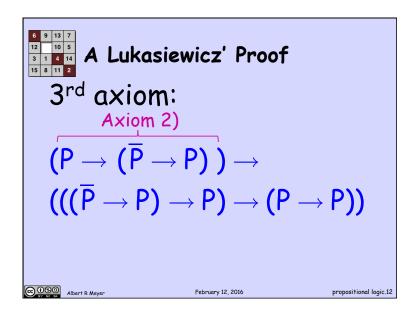
To illustrate the proof system we'll do an example, which you may safely skip.

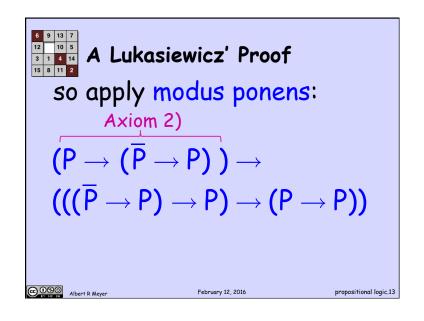
propositional logic.8

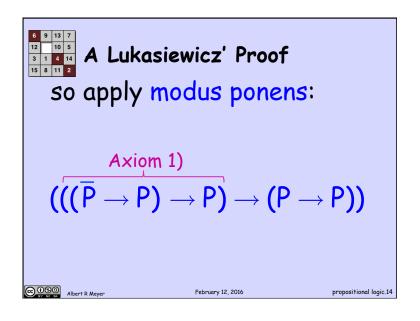


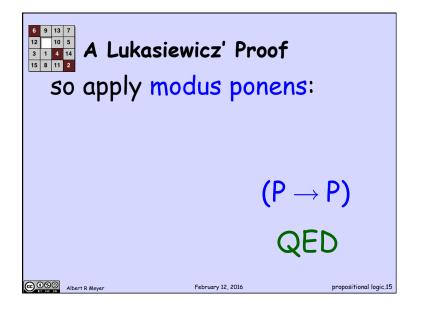


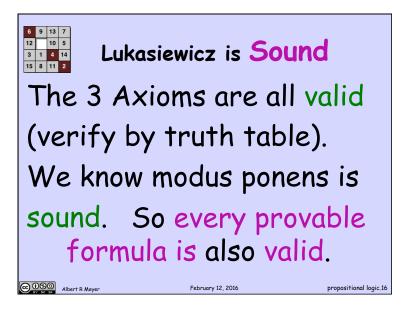


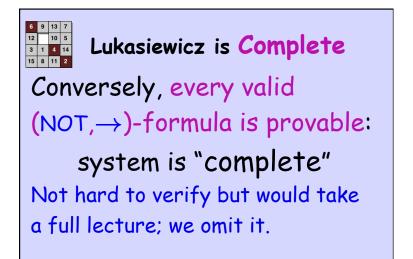












February 12, 2016

propositional logic.17

