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T nd  two-way walks
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walk from u to v and
back from v to u:

u and v are strongly
connected.
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relation R on set A
is symmeftric iff
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transitive,
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Theorem:
R is an equiv rel iff
R is the strongly
connected relation

of some digraph
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examples:
« = (equality)
= (modn)

e same size
« same color
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Representing equivalences

For total function f:A—B
define relation =;on A:

a=;a IFF f(a)= f(a)

s BB
EE: Representing equivalences
Theorem:

Relation R on set A is
an equiv. relation IFF

Ris=;
for some f:A—B

Albert R Meyer
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EE representing = (mod n)
= (modn) s
=; where

f(k) ::= rem(k,n)

Representing equivalences

For partition TT of A
define relation = on A:

a=pa IFF a,a arein
the same block of TT
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i Representing equivalences
Theorem:

Relation R on set A is an
equiv. relation IFF

Ris =q
for some partition TT of A

Albel Meyer March 22, 2013




