In-Class Problems Week 4, Mon.

Problem 1.

The *inverse* R^{-1} of a binary relation R from A to B is the relation from B to A defined by:

$$b R^{-1} a$$
 iff $a R b$.

In other words, you get the diagram for R^{-1} from R by "reversing the arrows" in the diagram describing R. Now many of the relational properties of R correspond to different properties of R^{-1} . For example, R is *total* iff R^{-1} is a *surjection*.

Fill in the remaining entries is this table:

R is	iff	R^{-1} is
total		a surjection
a function		
a surjection		
an injection		
a bijection		

Hint: Explain what's going on in terms of "arrows" from A to B in the diagram for R.

Arrow Properties

Definition. A binary relation, R is

- is a *function* when it has the $[\le 1 \text{ arrow } \mathbf{out}]$ property.
- is *surjective* when it has the $[\ge 1 \text{ arrows in}]$ property. That is, every point in the right-hand, codomain column has at least one arrow pointing to it.
- is *total* when it has the $[\ge 1 \text{ arrows } \mathbf{out}]$ property.
- is *injective* when it has the $[\le 1 \text{ arrow in}]$ property.
- is *bijective* when it has both the [= 1 arrow out] and the [= 1 arrow in] property.

Problem 2.

Assume $f: A \to B$ is total function, and A is finite. Replace the \star with one of \leq , =, \geq to produce the *strongest* correct version of the following statements:

- (a) $|f(A)| \star |B|$.
- **(b)** If f is a surjection, then $|A| \star |B|$.
- (c) If f is a surjection, then $|f(A)| \star |B|$.

^{2017,} Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license.

- (d) If f is an injection, then $|f(A)| \star |A|$.
- (e) If f is a bijection, then $|A| \star |B|$.

Problem 3.

Let $R: A \to B$ be a binary relation. Use an arrow counting argument to prove the following generalization of the Mapping Rule 1.

Lemma. If R is a function, and $X \subseteq A$, then

$$|X| \ge |R(X)|$$
.

Problem 4.

Let $A = \{a_0, a_1, \dots, a_{n-1}\}$ be a set of size n, and $B = \{b_0, b_1, \dots, b_{m-1}\}$ a set of size m. Prove that $|A \times B| = mn$ by defining a simple bijection from $A \times B$ to the nonnegative integers from 0 to mn - 1.

Problem 5. (a) Prove that if A surj B and B surj C, then A surj C.

- (b) Explain why A surj B iff B inj A.
- (c) Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.
- (d) According to the official definition, A inj B requires a total injective *relation* ($[\ge 1 \text{ out}, \le 1 \text{ in}]$). Explain why A inj B iff there is a total injective *function* ($[= 1 \text{ out}, \le 1 \text{ in}]$) from A to B.